題號: 261 國立臺灣大學 104 學年度碩士班招生考試試題

科目:離散數學(A)

節次: 6

題號: 261

共9大題。總分100分。

- 1. (13 %) Consider two propositions: $P: (A \lor B) \Rightarrow C$ and $Q: (C \Rightarrow B) \lor (\neg C \Rightarrow \neg A)$. Please draw a truth table (10 %) and decide the relationship between P and Q (3 %). You can use as many columns as you need.
- 2. (12 %) Show that the following statements about the integer x are equivalent: (a) 3x + 2 is even, (b) x + 5 is odd, and (c) x^2 is even.
- 3. (10 %) Among the arrangements of the 26 different English letters: (a) How many ways can we permute to obtain "BRT" or "FAN"? (b) How many ways can we permute such that none of the patterns "USA" and "SAP" occur?
- 4. (10 %) Suppose that you have ten cards as shown below:

	اما	1 - 1	1 _ 1		1 _ f	1 . [1 . 1		1
1 1	1 1	121	12	131	3	4	4	5	5
一次各位。	150 M	1 308	111 32 8	33.3444.50	7 a 7 / a 5 / 5	100000	14 4 5 8 Sec.	15-55-21	28585 F.3
لسنست	20 Section 20 - 1				20000000	22/9/155/15	6026253	1255555	252.0

You shuffle them and deal them in a row and you might get:

What is the expected number of adjacent pairs with the same value? In the example, there are two adjacent pairs with the same value, the 3's and the 5's.

- 5. (10 %) Let A be an invertible matrix. Show that $(A^n)^{-1} = (A^{-1})^n$ whenever n is a positive integer.
- 6. (10 %) Prove that if $n \in \mathbb{Z}^+$ and $n \ge 2$, then $\prod_{i=2}^n \left(1 \frac{1}{i^2}\right) = \frac{n+1}{2n}$.
- 7. (10 %) Define the sequence of numbers as follows:

$$a_n = \begin{cases} 1 & \text{if } 0 \le n \le 3, \\ a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4} & \text{if } n \ge 4. \end{cases}$$

Prove that $a_n \equiv 1 \pmod{3}$ for all $n \ge 0$.

- 8. (15%) Define $a_0 = 1$, $a_1 = 3$, $a_2 = 5$, and $a_n = a_{n-1} \cdot a_{n-2}^2 \cdot a_{n-3}^3$.
 - (a) Write an iterative algorithm for finding the nth term of the sequence. (7 %)
 - (b) Same as (a) but write a recursive algorithm instead. (5 %)
 - (c) Which algorithm is more efficient? (3 %)
- 9. (10 %) Let $S = \{2, 16, 128, 1024, 8192, 65536\}$. If four numbers from S are arbitrary selected, show that the multiplication of any two numbers from the four selected numbers equals 131072.

試題隨卷繳回